Simmons Street / Jack Smith Creek

Stormwater BMP Project

Year 5 Monitoring Report
DMS Project Number 92646
CAMA Permit 61-10
USACE Action ID SAW-2009-01796
DWR Project \#09-1010
Craven County, North Carolina
December 2017

Prepared by:
NC Department of Environmental Quality
Division of Mitigation Services
1652 Mail Service Center
Raleigh, NC 27699

Mitigation Services
ENVIRONMENTALQUALITY

TABLE OF CONTENTS

1.0 Project Summary 1
2.0 Performance Standards 1
2.1 Vegetation 1
2.2 Hydrology 1
3.0 Monitoring Plan 2
4.0 Maintenance \& Contingency Plan 2
5.0 Year 5 Monitoring 2

Appendices

Appendix A. Background Tables
Table 1 Project Components
Table 2 Project Activity \& Reporting
Table 3 Project Contacts
Table 4 Project Attributes
Appendix B. Visual Assessment Data
Figure 1 Vicinity Map
Figure 2 Asset Map
Figure 3 Current Condition Plan View
Site Photos
Table 5 Vegetation Condition Assessment
Appendix C. Vegetation Plot Data
Table 6 Vegetation Plot Summary
Table 7 Vegetation Density
Appendix D. Hydrologic Data
Figure 4 Monthly Rainfall Data
Figures 5a-5h Monitoring Gauge Data
Table 8 Wetland Hydrology Criteria Attainment
Appendix E. BMP Supporting Documentation
Appendix F. BMP Annual Maintenance Forms

1.0 PROJECT SUMMARY

The Simmons Street / Jack Smith Creek Stormwater Project is a nutrient offset project that involves the creation of 25 acres of planted stormwater wetland areas. As part of the construction, 14 acres of wetlands were impacted and converted into stormwater wetland areas. Approval of this conversion was obtained by providing on-site mitigationfor the impacts. A total of 1.0 acres of wetland creation, 2.3 acres of wetland enhancement, and 10 acres of wetland preservation were proposed and approved to serve as the on-site mitigation. The construction of the stormwater wetland and wetland preservation, creation and enhancement efforts totaled to 38.3 acres. The total urban watershed area treated by the site was approximately 1,534 acres. The purpose of this report is to provide onsite mitigation information, and BMP- related monitoring associated with the project. The goals and objectives of the mitigation areas of the project are provided below.

Goals	Objectives
1. Improve the quality of stormwater runoff that flows to Jack Smith Creek by reducing nutrient and sediment loadings.	Create 25 acres of stormwater wetlands that will receive and treat stormwater runoff.
2. Reduce the impact of flooding in an urban watershed in New Bern	Utilize created stormwater wetlands for flood control through the use of pumps.
3. Protect and preserve existing bottomland hardwood/headwater forest wetlands along Jack Smith Creek.	Protect existing wetlands in a conservation easement and restore native vegetation where needed.

This project is a unique water quality partnership between the City of New Bern, the Division of Mitigation Services (DMS, formerly the Ecosystem Enhancement Program), and the NC Clean Water Management Trust Fund. The project is primarily a stormwater wetland designed to capture and treat runoff from a large watershed in New Bern. The wetland is an environmental initiative by the City and is a part of the DMS NutrientOffset Program. The project is unique in both its size and scope, and, at the time of construction, was the largest stormwater retrofit built to date in NC. The site location and contributing watershed represents a rare chance to intercept stormwater before it gets to the Neuse River, less than one mile away. In addition, the site hasbeen used by NC State University as a wetland research park to evaluate the ability of large scale wetlands to improve water quality.

2.0 PERFORMANCE STANDARDS

2.1 Vegetation

An average density of 260 stems/acre must be surviving after five years of monitoring to meet success. Two permanent vegetation plots were established at the project inception.

2.2 Hydrology

The wetland enhancement and creation areas will present continuous saturated or inundated hydrologic conditions for at least 12% of the growing season during normal weather conditions. A "normal" year is based on NRCS climatological data for Craven County, using the 30th to 70th percentile thresholds as the range of normal. The growing season for the site occurs from March 18 to November 14 (241 days). Hydrologic performance will be determined through evaluation of automatic recording gauge data supplemented by documentation of wetland hydrology indicators as defined in the 1987 USACE Delineation Manual, daily data will be collected fromautomatic wells over the 5 -year monitoring period. Eight (8) continuous monitoring groundwater gauges were installed to following construction of the project.

3.0 MONITORING PLAN

Annual monitoring data will be reported using the DMS monitoring template, with the parameters below.

Parameter	Quantity	Frequency
Groundwater Hydrology	8 (2 reference, 5 creation, 1 enhancement)	annual
Vegetation	2 (1 enhancement, 1 creation)	annual
Project boundary \& Visual assessment	N/A	Semi-annual
BMP	The Town of New Bern will inspect and maintain stormwater cells and make repairs if necessary as described on the O\&Magreement	As Needed

4.1 MONITORING

Year 5 annual monitoring (MY5) was conducted in November 2017. Monitoring activities included visual monitoring and stem counts of the project vegetation; downloading monitoring gauge data; checking the integrity of the easement; and taking photographs. The creation and enhancement areas have an established stand of obligate wetland grasses and rushes and desirable species of volunteer trees were documented. Both vegetation plots met vegetative success criteria in MY5 (Table 6 and 7).

All groundwater gauges in the creation and enhancement wetlands met hydrologic success criteria for MY5 and achieved a success hydroperiod greater than 12% of the growing season (Appendix D). When the project was transferred from NC State to DMS for monitoring, it was discovered that one of the reference gauges which has not met hydrology over the entire monitoring, was installed outside the easement in a non-wetland area. Therefore, gauge three should not be evaluated for comparison as a reference.

The stormwater wetland BMP areas do not have vegetative success criteria. However, both planted vegetation and volunteers have developed successfully over the monitoring period. Each wetland cell has been substantially established in desirable stormwater wetland species. While there are areas of cattail growth on the site; these areas contain desirable species as well. Based on visual assessment in MY5, cattail is not a significant threat to the site and was managed appropriately over the monitoring period. The stormwater BMP maintenance is a routine task of the New Bern Stormwater Division in the Public Works department. Monitoring and maintenance occurs at least quarterly, and annual monitoring forms are provided in Appendix F.

Initial estimates of BMP performance indicated that these stormwater wetlands could treat up to 1,000 acres of runoff and that the cells would have a treatment effectiveness of 40% total nitrogen (TN), 35% total phosphorus (TP), and 85% total suspended solids (TSS). Water quality monitoring in MY1 and MY2 conducted by NC State showed that the actual effectiveness resulted in reductions of $76 \% \mathrm{~N}, 91 \% \mathrm{TP}$, and 90% TSS (Appendix E).

The City of New Bern has conducted regular monitoring at the site, and the project is considered to have a significant benefit to water quality and stormwater storage. DMS recommends closing this project as proposed.

APPENDIX A
BACKGROUND TABLES

Table 1: Project Mitigation Components

Mitigation Credit Summations			
Nitrogen Nutrient Offset			
198,243 lbs*	Area (Ac)	Notes	
Project Components	25	BMP	
Project Component	1.0	On-Site Mitigation	
Stormwater Wetlands	2.3	On-Site Mitigation	
Created Wetland	10.0	On-Site Mitigation	
Enhanced Wetland			
Preserved Wetlands			

*Calculations and justification included in Appendix for 40% nitrogen reduction.
Based on treatment of stormwater runoff from an urban watershed of approximately 1530 acres.
Table 2. Project Activity and Reporting History

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan		N/A
Final Design - Construction Plans	Nov-08	Nov-10
Construction		Dec-12
Bare root plantings for mitigation areas		Jan-13
Stormwater wetland planting		Jun-13
Mitigation Plan / As-built (Year 0 Monitoring - baseline)		Dec-13
Year 1 Monitoring	Nov-13	Dec-13
*Supplemental Planting		Mar-14
**Cattail removal and supplemental plugs in BMP area		May-14
Year 2 Monitoring	Feb-15	May-15
Year 3 Monitoring	Oct-15	Mar-16
Year 4 Monitoring	Nov-16	Mar-17
Year 5 Monitoring	Nov-17	Dec-17
*The created wetland was replanted in with 600 plants in the winter of 2014 due to low stem counts from browse in MY 1 (2013)		
** Cattail removal and supplemental planting of 5,000 plugs occurred in the constructed wetland on May 2014 to for more desirable wetland species.		

Table 3. Project Contacts Table

Simmons Street / New Bern Stormwater BMP Project / DMS \# 92646	
Designer Primary project design POC	NCSU Biological and Agricultural Engineering Kris Bass 919.515.8245
Construction Contractor Construction contractor POC	Carolina Environmental Contracting Joanne Cheatham 336.320.3849
Survey Contractor Survey contractor POC	Turner Land Surveying Lissa Turner 919.875.1378
Planting Contractor Planting contractor POC	Carolina Wetland Services Gregg Antemann 866.527.1177
Nursery Stock Suppliers Planting POC	Wetland Plants, Inc. Ellen Colodney 252.482.5707
Monitoring Performers	NC Division of Mitigation Services Lindsay Crocker and Casey Haywood 919-707-8944

Table 4. Project Attributes Table

Project Information				
Project Name	Simmons Street / New Bern Stormwater BMP			
County	Craven			
Project Area (acres)	40 acres			
Project Coordinates (latitude and longitude)	35.1243, -77.0616			
Project Watershed Summary Information				
Physiographic Province	Coastal Plain			
River Basin	Neuse			
USGS HUC for Project (14 Digit)	3020204020010			
DWQ Sub-basin	03-04-10			
Project Drainage Area (acres)	1500			
Project Drainage Area, \% Impervious	55\%			
Wetland Summary Information				
Parameter	Stormwater Wetland	Created Wetland	Enhanced Wetland	Preserved Wetland
Size of Wetland (acres)	25	1	2.3	10
Wetland Type (non-riparian, riparian riverine or riparian non-riverine)	Stormwater	Non-Riparian	Riparian	Riparian
Mapped Soil Series	Arapahoe FSL	Arapahoe FSL	Arapahoe FSL	Arapahoe FSL
Drainage Class	Very Poorly Drained	Very Poorly Drained	Very Poorly Drained	Very Poorly Drained
Soil Hydric Status	Yes	Yes	Yes	Yes
Source of Hydrology	Stormwater	Groundwater	Surface Water	Surface Water
Hydrologic Impairment	None	Drained and Graded	Drained	None
Regulatory Considerations				
Regulation	Applicable?	Resolved?	Supporting Documentation	
Waters of the U.S. Section 404	Yes	Yes	NCDENR CAMA Major Permit \#61-10	
Waters of the U.S, - Section 401				
Endangers Species Act	Yes	Yes	NCDENR CAMA Major Permit \#61-10	
Historic Preservation Act	Yes	Yes	NCDENR CAMA Major Permit \#61-10	
Coastal Area Management Act				
Essential Fisheries Habitat	Yes	Yes	NCDENR CAMA M	or Permit \#61-10

APPENDIX B

VISUAL ASSESSMENT DATA

Site Photos

Outlet weir looking towards Cell D

Wetland Creation Area

Tidal gates looking towards outlet

APPENDIX C
VEGETATION PLOT DATA

Table 6. Vegetation Plot Summary

Plot \#	Planted Stems	Avg. Stems per Acre	Success Criteria Met
1	7	283	Yes
2	9	364	Yes

Table 7. Vegetation Density
DMS Project Code 92646. Project Name: BMP (Simmons Street Wetland New Bern)

Scientific Name	Common Name	Species Type	Current Plot Data (MY5 2017)				Annual Means									
			92646-01-0001		92646-01-0002		MY5 (2017)		MY4 (2016)		MY3 (2015)		MY2 (2014)		MY1 (2013)	
			Planted	Total												
Acer rubrum	red maple	Tree		3				3		8		8				
Ulmus americana	american elm	Tree			1	1	1	1								
Fraxinus pennsylvanica	green ash	Tree			1	1	1	1	1	1	1	1	2	2	2	2
Morella cerifera	wax myrtle	shrub		13		5		18		18		18				
Nyssa aquatica	water tupelo	Tree	2	2	1	1	3	3	3	3	3	3				
Nyssa biflora	swamp tupelo	Tree	2	2	3	3	5	5	5	5	5	5	6	6	4	4
Pinus taeda	loblolly pine	Tree		3				3								
Pyrus calleryana	Callery pear	Exotic				1		1		1		1				
Taxodium distichum	bald cypress	Tree	3	3	3	3	6	6	6	6	6	6	7	7	4	4
*Liriodendron tulipifera	tulip poplar	Tree											6	6		
Unknown		Tree							1	1	1	1	3	3	1	5
Stem count			7	26	9	15	16	41	16	43	16	43	24	24	11	15
size (ares)			1		1		2		2		2		2		2	
		size (ACRES)	0.025		0.025		0.05		0.05		0.05		0.05		0.05	
Species count			3	6	5	6	5	8	5	8	5	8	5	5	4	4
Stems per ACRE			283	1053	364	607	324	830	324	870	324	870	486	486	223	304

* DMS believes that the MY1 and MY2 plant monitoring misidenfied Nyssa species as Liriodendron, and that initial monitoring efforts were problematic

APPENDIX D HYDROLOGIC DATA

Figure 4. Monthly Rainfall Data BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Observed rainfall data collected from the State Climate Office of North Carolina, NC State University CRONOS database, Craven County Airport, NC (KEWN) monitoring station. Historic data obtained from the USDA-NRCS Agricultural Applied Climate Information System (Craven County Airport, NC (KEWN) monitoring station).

Figure 5a. Monitoring Gauge \#1
BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Growing Season Days: 2 (Mar 18 - Nov 14)
Target Hydroperiod Percent: 12\%
Required Number of Days Meeting Requirements: 29
Longest Period Meeting Requirements: 157
Hydroperiod Percent: 65.1\%

Figure 5b. Monitoring Gauge \#2
BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Growing Season Days: 2 (Mar 18 - Nov 14)
Target Hydroperiod Percent: 12\%
Required Number of Days Meeting Requirements: 29
Longest Period Meeting Requirements: 47
Hydroperiod Percent: 19.5

Figure 5c. Monitoring Gauge \#3
BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Growing Season Days: 2 (Mar 18 - Nov 14)
Target Hydroperiod Percent: 12\%
Required Number of Days Meeting Requirements: 29
Longest Period Meeting Requirements: 6
Hydroperiod Percent: 2.5\%

Figure 5d. Monitoring Gauge \#4
BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Growing Season Days: 241(Mar 18 - Nov 14)
Target Hydroperiod Percent: 12\%
Required Number of Days Meeting Requirements: 29
Longest Period Meeting Requirements: 241
Hydroperiod Percent: 100\%

Figure 5 e . Monitoring Gauge \#5
BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Growing Season Days: 241(Mar 18 - Nov 14)
Target Hydroperiod Percent: 12\%
Required Number of Days Meeting Requirements: 29
Longest Period Meeting Requirements: 61
Hydroperiod Percent: 25.3\%

Figure 5f. Monitoring Gauge \#6
BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Growing Season Days: 241 (Mar 18 - Nov 14)
Target Hydroperiod Percent: 12\%
Required Number of Days Meeting Requirements: 29
Longest Period Meeting Requirements: 61
Hydroperiod Percent: 25.3\%

Figure 5g. Monitoring Gauge \#7
BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Growing Season Days: 241 (Mar 18 - Nov 14)
Target Hydroperiod Percent: 12\%
Required Number of Days Meeting Requirements: 29
Longest Period Meeting Requirements: 62
Hydroperiod Percent: 25.7\%

Figure 5h. Monitoring Gauge \#8
BMP (Simmons Street Wetland, New Bern), DMS Project ID\# 92646

Growing Season Days: 241 (Mar 18 - Nov 14)
Target Hydroperiod Percent: 12\%
Required Number of Days Meeting Requirements: 29
Longest Period Meeting Requirements: 141
Hydroperiod Percent: 58.5\%

Table 8. Wetland Hydrology Criteria Attainment

| | Success Criteria Achieved/Max Consecutive Days During Growing Season | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Percentage) | | | |

1. Growing Season is 241 days. Twelve (12) percent of the growing season is equal to 29 days or more of consecutive readings above 12 inches.
2. None of the gauges provided reliable data during the 2015 monitoring season. All gauges were pulled and replaced March 2016 to capture the 2016 growing season.

APPENDIX E

BMP SUPPORTING DATA

Subwatershed	Residential						Commercial	Forest	Industrial	$\begin{aligned} & \text { Open } \\ & \text { space } \end{aligned}$	Road	
	1 acre	1/2 acre	1/3 acre	1/4 acre	1/8 acre	2 acre						Total
0	12.49	31.01	95.08	199.85	14.28	2 acre						
1	0.84	9.55	10.71	29.16	0.44	0	88.18	81.98	82.17	43.56	148.89	797.51
2	6.86	67.95	45.98	18.03	1.22	35	54.25	3.22	13.01	9.44	18.01	148.62
3	0.56	14.55	46.09	12.95	8.96	32	35.25	61.09	28.24	13.65	45.78	325.41
Total	20.75	123.07	197.86	259.99	24.89	,	241.62	48.15	8.85	27.74	30.61	262.72
				259.93	24.89	1.68	241.62	194.45	132.26	94.39	243.3	1534.25

Main Watershed	8.26	92.05	102.78	60.14	10.62	1.67	153.43				
Percent Impervious	0.2	0.25	0.3	0.38	0.65	0.12	153.43 0.85	112.46	50.1	50.83	94.4
Rv	0.23	0.275	0.32	0.392	0.635	0.158	0.85	0	0.72	0	0.95
R	11.3	13.5135	15.7248	19.26288	31.2039	7.76412	0.815	0.05	0.698	0.05	0.905
Load (TP)	6.33	84.3376	109.57802	78.544239	22.467931	$\frac{7.76412}{}$	$\frac{40.0491}{416.6129254}$	$\frac{2.457}{18.73410412}$	34.29972	2.457	44.4717
Load (TN)	42.2	562.251	730.52011	523.62826	149.78621	5.8606683	2777.419503	18.73410412	116.5086	8.46749522	284.6331
Load (TSS)	1150	15321.3	19906.673	14268.87	4081.6742	159.70321	75684.68145	124.8940274	776.724	56.4499681	1897.554
Extra Watershed	12.49	31.01	95.08	199.85	14.28						
Percent Impervious	0.2	0.25	0.3	0.38	14.28	0	88.18	81.98	82.17	43.56	148.89
Rv	0.23	0.275	0.32	0.392	0.65	$\frac{0.12}{0.158}$	0.85	0	0.72	0	0.95
R	11.3	13.5135	15.7248	19.26288	31.2039	7.76412	0.815	0.05	0.698	0.05	0.905
Load (TP)	9.571	28.4118	101.36873	261.00875	30.211117	7.76412	40.0491	2.457	34.29972	2.457	44.4717
Load (TN)	63.81	189.412	675.79152	1740.0583	201.40744	0	4377095	13.65660551	191.0881	7.25642518	448.9303
Load (TSS)	1739	5161.48	18415.319	47416.589	5488.3529	0	1596.251396	91.04403672	1273.92	48.3761678	2992.869

	Pre-BMP Loading (Ibs/year)			
	Main WS	Extra WS	Total	lbs/ac/yr
TP	1,147	1,331	2,478	1.62
TN	7,647	8,873	16,520	10.77
TSS	208,389	241,788	450,176	293.42

Removal \%	Removal (lbs/yr)			
	Main WS	Extra WS	Total	lbs/ac/yr
35%	401	466	$\mathbf{8 6 7}$	0.57
40%	3,059	3,549	$\mathbf{6 , 6 0 8}$	4.31
85%	177,130	205,519	$\mathbf{3 8 2 , 6 5 0}$	249.41

Post-BMP Loads (lbs/yr)			
Main WS	Extra WS	Total	lbs/ac/yr
746	865	1,611	1.05
4,588	5,324	9,912	6.46
31,258	36,268	67,526	44.01

Since the project activation in early June of 2013, 30 base flow events and 25 storm flow events have been sampled for water quality at six locations in the wetland system. Base flow events are classified as the events that are pumped from Jack Smith Creek to the wetland by the smaller, electric pump. This is typically the actual base flow from the creek and events less than 1.50 inches. The storm events are classified as events where the larger, diesel pumps must turn on to handle the flow of the creek, typically events greater than 1.50 inches (Figure 1).

Figure 1: Schematic of the monitoring set-up and characterization of base flow and storm event cells.

The six monitoring stations consist of ISCO 6712 automated samplers to collect flow-weighted water quality samples. Hydrology is also measured via bubbler and areal velocity meter modules.

Of the events mentioned above, results from 30 base flow and 25 storm event samples have been analyzed (Table 1). The parameters of interest were Total Kjeldahl Nitrogen (TKN), Total Ammonical Nitrogen, $\mathrm{NH}_{3}-4$ (TAN), Nitrite-Nitrate Nitrogen (NO2-3), Total Phosphorus (TP), and Total Suspended Solids (TSS). Total Nitrogen (TN) was calculated by the addition of TKN and NO2-3.

Percent reductions are calculated inflow of the wetland vs. outflow of the cell (e.g. SF Inlet vs. SF Middle and SF Inlet vs. Outlet). The first cells tend to have the highest treatment rates for TN, especially for the storm events, and then concentrations increase slightly. This is attributed to the release and irreducible nature of certain organic nitrogen (ON) species in wetland systems; irreducible effluent concentrations typically range from $0.7-0.8 \mathrm{mg} / \mathrm{L}$ (Moore et al. 2011).

Table 8: Mean EMC Concentrations and Percent Reductions for June 2013 - October 2014

	$\begin{gathered} \mathrm{TKN} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \% \\ \text { Red } \\ \hline \end{gathered}$	$\begin{gathered} \text { TAN } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \% \\ \text { Red } \end{gathered}$	$\begin{aligned} & \text { NO2-3 } \\ & (\mathrm{mg} / \mathrm{L}) \\ & \hline \end{aligned}$	$\begin{gathered} \% \\ \text { Red } \end{gathered}$	$\begin{gathered} \mathrm{TN} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \% \\ \text { Red } \end{gathered}$	$\begin{gathered} \mathrm{TP} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \% \\ \text { Red } \end{gathered}$	$\begin{gathered} \text { TSS } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$	\% Red
Storm Events												
SF Inlet	1.41		0.10		0.14		1.55		0.34		71.21	
SF Middle	0.55	61	0.03	66	0.04	69	0.59	62	0.06	82	4.20	94
Outlet	0.60	58	0.03	66	0.04	72	0.64	59	0.04	87	6.49	91
Base Flow Events												
BF Inlet	1.27		0.12		0.20		1.46		0.23		38.17	
BF Middle	0.67	47	0.09	31	0.06	69	0.73	50	0.05	77	4.35	89
BF End	0.94	26	0.08	36	0.06	69	0.97	34	0.14	40	77.48	-103
Outlet	0.62	51	0.04	67	0.04	77	0.67	54	0.05	80	7.11	81

The concentration results indicate the wetland is performing exceedingly well with all nutrient and sediment reductions (from inlets to outlet: green values) exceeding 50%. There is a large increase of TSS at the BF End station due to scouring, but treatment occurs prior to reaching the outlet, yielding an average TSS concentration of $7.11 \mathrm{mg} / \mathrm{L}$. The City of New Bern was alerted of the scoured area will maintain the site in the near future.

The inlet (SF Inlet and BF Inlet) and outlet (Outlet) nutrient and sediment loadings will be statistically analyzed when the hydrological analysis and quality check is complete for those stations. This analysis is currently underway.

As mentioned previously, most of the treatment for all nutrients and sediment occurs in the first cells of the system, whether it's a storm event or base flow. This is illustrated in Figures 2 and 3.

Figure 2: Illustrates where the treatment occurs in the base flow cells of the constructed wetland for each pollutant.

Figure 3: Illustrates where the treatment occurs in the storm event cells of the constructed wetland for each pollutant.

Nutrient (TN and TP) and sediment (TSS) loadings were also calculated for the two inlets and the outlet of the wetland system (Table 2). Observations from Table 2 indicate the wetland system has performed very well with all percent loading reductions exceeding state guidelines and relatively small loads exported from the site.

The major differences between the field monitored loading reductions and the predicted loading reductions can be attributed to the prediction of the inlet loadings to the site. The predicted inlet loads were much larger than the field observed loadings to the site. This affects the predicted loading reductions and exported loads from the site that were calculated using state removal guidelines.

Table 9: Predicted and Monitored Nutrient Loadings and Reductions for the Jack Smith Creek Stormwater Wetland
FIELD MONITORED RESULTS

	Storm Event Inlet			Base Flow Inlet			Outlet of System		
Loading Units	TN	TP	TSS	TN	TP	TSS	TN	TP	TSS
lb/year	1,144	249	47,385	3,943	607	103,517	1,202	80	14,526
lb/ac/year	0.75	0.16	30.88	2.57	0.40	67.47	0.78	0.05	9.47

FIELD MONITORED LOADINGS

	Loading Reductions			Percent Reductions			Exported Loads from Site		
Loading Units	TN	TP	TSS	TN	TP	TSS	TN	TP	TSS
lb/year	3,885	776	136,375	76%	91%	90%	1,202	80	14,526
lb/acre/year	2.53	0.51	88.88				0.78	0.05	9.47

PREDICTED LOADINGS

	Loading Reductions			State Removal Guidelines			Exported Loads from Site		
Loading Units	TN	TP	TSS	TN	TP	TSS	TN	TP	TSS
lb/year	6,608	867	382,650	40%	35%	85%	9,912	1,611	67,526
lb/acre/year	4.31	0.57	249.41				6.46	1.05	44.01

APPENDIX F

BMP ANNUAL MONITORING

Annual Stormwater BMP Inspection and Reporting Form

Location: __ Simmons Street BMP (New Bern, NC)
Date: $10 / 1 / 2013$ Time: $0730 \quad$ Recent Weather:__Rainy

Inspector: Avery Smith
Type of BMP: \quad Stormwater BMP

Date of Construction: \qquad July 2013

To answer these questions completely and thoroughly, visually inspect the entire BMP as closely as possible. Take notes and photographs on all information below.

Depth of water in forebay: Approx. 1 foot

Is erosion present? _ No If yes, where: \qquad
Is the outlet (orifice) obstructed, or can water flow freely out? \qquad
Are plants alive and thriving?
Post construction wetland plants have not established themselves.

Are non-native plants present?
No

Is mowing occurring inside the boundaries of the BMP?
No

Are beavers and/or muskrats present?
Yes, in the preserved wetland bordering the constructed wetlands

Is floating trash/debris present?
Yes, at the inlet to the BMP

BMP Maintenance Table

Task	Completed?	
Clear outlet/orifice so water can exit freely	Y or N	Yotes
Remove non-native plants only	Y or N	Not necessary this inspection period
Remove beaver dams	Y or N	Yes, we have implemented a pest control program
Remove floating trash/debris	Y or N	Yes, we have a maintenance schedule to remove trash from BMP inlet/pump station
Remove accumulated sediment from forebay	Yor N	

See pictures attached.

Annual Stormwater BMP Inspection and Reporting Form

Location: __ Simmons Street BMP (New Bern, NC)
Date: $8 / 4 / 2014$ Time: $0800 \quad$ Recent Weather: ___ Rain
\qquad
Type of BMP: __ Stormwater BMP

Date of Construction: \qquad July 2013

To answer these questions completely and thoroughly, visually inspect the entire BMP as closely as possible. Take notes and photographs on all information below.

Depth of water in forebay: 1.75 Feet

Is erosion present? No If yes, where: \qquad
Is the outlet (orifice) obstructed, or can water flow freely out?
Yes
Are plants alive and thriving?
Yes

Are non-native plants present? \qquad

Is mowing occurring inside the boundaries of the BMP?
Yes

Are beavers and/or muskrats present? \qquad
Is floating trash/debris present?
Yes, at the inlet to the pump station

BMP Maintenance Table

Task	Completed?	Notes
Clear outlet/orifice so water can exit freely	Y or N	Yes
Remove non-native plants only	Y or \mathbf{N}	We are in the process of treating cattails. Also we are starting to see a lot of alligator weed in the inlet waterways
Remove beaver dams	Y or N	Only in the inlet waterways and surrounding protected wetlands
Remove floating trash/debris	\mathbf{Y} or N	At the inlet to the pump station regularly
Remove accumulated sediment from forebay	Y or N	No the presents of sediment is minimal

See monitoring report pictures.

Annual Stormwater BMP Inspection and Reporting Form

Location: __Simmons Street BMP (New Bern, NC)
Date: $8 / 7 / 2015$ Time: $0730 \quad$ Recent Weather:__Rain

Inspector:__Avery Smith
Type of BMP: \quad Stormwater BMP

Date of Construction: \qquad July 2013

To answer these questions completely and thoroughly, visually inspect the entire BMP as closely as possible. Take notes and photographs on all information below.
Depth of water in forebay: 2 Feet
\qquad If yes, where: \qquad
Is the outlet (orifice) obstructed, or can water flow freely out? Yes

Are plants alive and thriving?
Yes

Are non-native plants present? \qquad

Is mowing occurring inside the boundaries of the BMP?
Yes

Are beavers and/or muskrats present? \qquad Yes, in the surrounding areas

Is floating trash/debris present?
Yes, in the waterway suppling the BMP

Task	Completed?	
Clear outlet/orifice so water can exit freely	Y or N	Yes
Remove non-native plants only	Y or N	At this point we are using mechanical methods to remove Alligator weed from the inlet to the pump station, due to its ability to slow supply water to the pumps.
Remove beaver dams	Y or N	In the past years we have been trapping beaver, muskrat, and nutria. For the most part we have only had muskrat and nutria inside the BMP, the beaver seem to stay in the surrounding protected wetlands.
Remove floating trash/debris	Y or N	Yes, we get a lot of trash from the nearby neighborhoods and it is a routine task to keep under control.
Remove accumulated sediment from forebay	Y or N into the forbay has minimal sediment because it is pumped in. Under normal condition trash and sediment are left at the inlet to the pump station.	

See monitoring report pictures.

Annual Stormwater BMP Inspection and Reporting Form

Location: __ Simmons Street BMP (New Bern, NC)
Date: \quad 8/15/2016 Time: $\underline{0900}$ Recent Weather: Sunny

Inspector:__Avery Smith
Type of BMP: \quad Stormwater BMP

Date of Construction: \qquad July 2013

To answer these questions completely and thoroughly, visually inspect the entire BMP as closely as possible. Take notes and photographs on all information below.

Depth of water in forebay: \qquad

Is erosion present? \qquad Yes

If yes, where: \qquad

Is the outlet (orifice) obstructed, or can water flow freely out? Yes

Are plants alive and thriving? Yes

Are non-native plants present? \qquad
Yes

Is mowing occurring inside the boundaries of the BMP?
Yes

Are beavers and/or muskrats present? Yes, in areas that indirectly effect the wetlands
Is floating trash/debris present? Yes, around the inlet to the pump station that
supplies water to the BMP

Task	Completed?	
Clear outlet/orifice so water can exit freely	Y or N	
Remove non-native plants only	Y or N	We treat invasive with herbicides when possible. Under normal circumstances we remove invasive plants mechanical means.
Remove beaver dams	Y or N	Yes, we remove dams from a few areas around the BMP due to the effects they have on drainage of the BMP.
Remove floating trash/debris	Y or N	Remove of trash from around the pump area is under a routine schedule
Remove accumulated sediment from forebay	Y or N	Still no noticeable built up of sediment. I feel that this will probably take longer due the water being introduces by a pump.

See monitoring pictures.

Annual Stormwater BMP Inspection and Reporting Form

Location: __Simmons Street BMP (New Bern, NC)
Date: $\quad 8 / 15 / 2017$ Time: __ Recent Weather: Scattered thunderstorms

Inspector:_Avery Smith
Type of BMP: \quad Stormwater BMP

Date of Construction: \qquad July 2013

To answer these questions completely and thoroughly, visually inspect the entire BMP as closely as possible. Take notes and photographs on all information below.

Depth of water in forebay: \qquad

Is erosion present? Yes \qquad If yes, where: A few areas on top of the berms from vehicle and mower traffic.

Is the outlet (orifice) obstructed, or can water flow freely out? Water is flowing freely

Are plants alive and thriving? Yes
Are non-native plants present? Yes
Is mowing occurring inside the boundaries of the BMP?
Yes

Are beavers and/or muskrats present?
Yes, in the surrounding areas

Is floating trash/debris present?
Yes, very little at the inlet structure

Task	Completed?	Notes
Clear outlet/orifice so water can exit freely	Y or N	During my inspection I noticed at one of the main crossover pipes some vegetation has grown up and slowed water flow down, I will schedule it to be opened up for water to move freely.
Remove non-native plants only	Y or N	It has been observed that some unwanted plants are present. Due to the scale this BMP total removal would be futile. They have been allowed to exist but are being kept under control.
Remove beaver dams N	We found a dam downstream of the BMP and is in the process of being remove, only because it is effecting water levels inside the BMP and protected wetlands in the surrounding areas.	
Remove floating trash/debris	Y or N	A normal task under our routine maintenance program.
Remove accumulated sediment from forebay	Y or N	Still no noticeable build-up of sediment.

See attached pictures.

